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Abstract An approach called growth model-based map-
ping (GMM) of quantitative trait loci (QTLs) is proposed
in this paper. The principle of the approach is to fit the
growth curve of each individual or line with a theoretical
or empirical growth model at first and then map QTLs
based on the estimated growth parameters with the
method of multiple-trait composite interval mapping.
In comparison with previously proposed approaches of
QTL mapping based on growth data, GMM has several
advantages: (1) it can greatly reduce the amount of
phenotypic data for QTL analysis and thus alleviate the
burden of computation, particularly when permutation
tests or simulation are performed to estimate significance
thresholds; (2) it can efficiently analyze unbalanced phe-
notype data because both balanced and unbalanced data
can be used for fitting growth models; and (3) it may
potentially help us to better understand the genetic basis
of quantitative trait development because the parameters
in a theoretical growth model may often have clear bio-
logical meanings. A practical example of rice leaf-age de-
velopment is presented to demonstrate the utility of GMM.

Keywords Quantitative trait loci - Growth model-based
mapping - Development - Leaf age - Rice

Introduction

Molecular markers enable us to map quantitative trait loci
and, at the same time, estimate their individual effects. In
general, QTL mapping is carried out based on the trait
performance at a certain time or stage (often the end) of
ontogeny. This strategy of QTL mapping can be called
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time-fixed mapping (TFM; Wu et al. 1999). An alterna-
tive strategy is to map QTLs based on the trait perfor-
mance at a series of times or stages of ontogeny. This
strategy can be called time-related mapping (TRM; Wu et
al. 1999). Two approaches have been proposed for ana-
lyzing the time-related phenotype data for QTL mapping.
An intuitive approach used in most TRM studies is to
map QTLs by analyzing the trait performance at each ob-
servation time or time interval separately (Bradshaw and
Settler 1995; Sondur et al. 1995; Cheverud et al. 1996;
Plomion et al. 1996; Price and Tomos 1997; Verhaegen et
al. 1997; Yan et al. 1998a, b). By comparing QTLs de-
tected at different times or time intervals, the expression
dynamics of individual QTLs could be inferred. This kind
of approach can be called separate time-related mapping
(STRM). Considering that a correlation may exist be-
tween phenotypes observed at adjacent times, Yan et al.
(1998a, b) developed a so-called conditional mapping
(CM) method for STRM analysis. The authors suggest
that the CM method could provide an estimate of the net
effect of a QTL expressed at each time interval.

Alternatively, Wu et al. (1999) proposed a joint time-
related mapping (JTRM) approach, which treats the de-
velopmental process of a quantitative trait as a whole for
QTL mapping by jointly analyzing all phenotype data
measured at different times or time intervals with the
method of multiple-trait composite interval mapping
(MCIM; Jiang and Zeng 1995). With a practical example
of tiller number development in rice the authors demon-
strated that JTRM and STRM could detect the same set
of QTLs, but JTRM has the merits of getting a compre-
hensive estimate of each QTL’s position and plotting a
complete curve of the expression dynamics for each
QTL. In addition, JTRM may also potentially increase
the statistical power of QTL mapping because it makes
use of the information on correlations between different
times or time intervals in the analysis.

Although the current TRM approaches (STRM and
JTRM) can reveal the differential activities of QTLs dur-
ing ontogeny, it does not take the pattern of trait-value
growth into account. The pattern of trait-value growth
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has long been an interesting subject in physiological
studies because it may reflect the biological mechanisms
of quantitative trait development. The pattern of trait-
value growth can usually be quantitatively described
with a theoretical or an empirical growth model (Grizzle
and Allen 1969; Koops 1986; France et al. 1996) such as
the Gompertz model (Winsor 1932), the Richards model
(Richards 1959) and the Weibull model (Yang et al.
1978). The usefulness of a growth model is that it allows
precise description of a complicated growth process
with only a few parameters, which, in many cases, may
have definite biological meanings, depending on the trait
and the organism concerned. Practical examples can be
seen from studies on human-height growth (Preece and
Baines 1978; Jolicoeur et al. 1988; Kanefuji and Shohoji
1990). Therefore, growth models are helpful for under-
standing the biological mechanisms conferring quantita-
tive trait development. We thus have reason to expect
that combining growth models with QTL mapping
would enable a better understanding of the developmen-
tal genetic basis of quantitative traits.

In this paper, we propose an approach of QTL map-
ping based on growth models, called growth model-
based mapping (GMM), and compare it with JTRM via a
practical example.

The principle of growth model-based QTL mapping

At the phenotypic level, the development of a quantita-
tive trait appears as a process of trait value growth,
which can be plotted as a curve in a two-dimensional
space defined by time as one axis and trait value as the
other. In general, every trait has a characteristic pattern
(or shape) of the growth curve, but the details of the
growth curve may vary greatly among genotypes (see
Fig. 2a). In other words, the growth curve of a quantita-
tive trait is genetically controlled. Hence, by associating
growth curves (phenotypes) of a trait with molecular
marker-types (genotypes), it is possible to detect QTLs
controlling the development of the trait.

A straightforward and intuitive approach for mapping
QTLs underlying the development of a quantitative trait,
by testing the association between growth curves and
marker-types, is to integrate marker-type data and all
phenotype data measured at sequential times or time in-
tervals into a multivariate linear regression analysis with
the method of MCIM (taking the DH population as an
example), i.e.,

m
Y ik =box+bpxi Y bixji+€ i (121,‘-‘,71;k=17-~7l)7(1)
1
where y; is the phenotypic value of DH line j for trait (or
time or time-interval) k; b, is the mean of the model for
trait k; b*, is the additive effect of the putative QTL on
trait k; x*; is an indicator variable of the putative QTL’s
genotypes, taking values of 1 for genotype Q,Q; and —1
for 0,0,, with probabilities depending on the genotypes
of flanking markers; b, is the partial regression coeffi-

cient of y; on marker /; x; is an indicator variable of
genotypes of marker (cofactor) /, taking values of 1 for
genotype MM, and -1 for M,M,; €, is the random error
for trait k in DH line j; and n, m and ¢ are the numbers of
DH lines, markers selected as cofactors and traits (or
times or time intervals) to be analyzed, respectively. This
approach is actually the principle of JTRM (Wu et al.
1999). However, the approach does not take the mathe-
matical pattern of the growth curve into account.

In principle, the growth curve of a trait can be de-
scribed by a theoretical or an empirical growth model, i.e.,

y:f(t;e)+£7 (2)

where ¢ is time; y is the trait value at time #; 6 = (0,,
0,, ..., 8,)', a vector of parameters, which defines a point
in an m-dimensional space (see Fig. 2b); and ¢ is the ran-
dom error following a normal distribution with mean = 0.
Consider an ideal situation, where the growth curve is per-
fectly fitted by the growth model and there is no random
error (¢ = 0). In this case, the growth curve is completely
determined by the growth-parameter vector 0. Namely,
there is a definite corresponding relationship between the
growth curve and the growth-parameter vector. In the
terms of analytical mathematics (Lang 1978), function (2)
is a mapping from the set of growth-parameter vectors (©)
to the set of growth curves (C), i.e., f: ® — C. This means
that the variation observed in C (or among growth curves;
Fig. 2a) should be a reflection of the variation in © (or
among growth-parameter vectors; Fig. 2b), and so the as-
sociation between growth curves and marker-types should
be a reflection of the association between growth-parame-
ter vectors and marker-types. Thus, we find an alternative
approach for mapping QTLs underlying the development
of a quantitative trait based on testing the association be-
tween growth curves and marker-types; namely, to inte-
grate marker-type data and estimated growth parameters
(derived phenotype data) into a multivariate linear regres-
sion analysis with the method of MCIM. This is the meth-
od of GMM. A model similar to (1) can be used. The only
difference is that the symbol y; in the model of GMM
stands for the kth growth parameter (instead of the trait
value measured at the kth observation time or time-inter-
val) of the jth DH line.

An example

To verify the usefulness of GMM, we compared it with
JTRM using data of the leaf age growth in rice. The leaf
age (or the age indicated by the leaves on the main culm) of
a plant at a given time is defined by Zhou et al. (2001) as:

Leaf age = Number of developed leaves
Length of the developing leaf
Final length of the developing leaf”

The experiment was carried out with a DH population
consisting of 111 lines derived from a cross between an
indica rice variety Gui-630 and a japonica rice variety
Taiwanjing. The leaf age of each plant was investigated
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Fig. 1 Growth curves of the leaf age of parental lines Taiwanjing
and Gui-630 fitted by GM-I. R2: coefficient of determination

every 5-7 days beginning on the 30th day after sowing
untill the end of leaf growth. For details of the experi-
ment, see Zhou et al. (2001).

A simple empirical growth model was found to fit the
data of the leaf-age growth of each DH line well within
the time span of observation (Fig. 1; all the coefficients
of determination obtained by the model were greater
than 95%, with an average of 98.33 + 1.15%): i.e.,

y=c—|~atb+8, 3)

where y is leaf age, # is time (the origin of 7 was set at the
25th day after sowing), a, b and ¢ are parameters, and ¢ is
the error. Both the fitted growth curves and their corre-
sponding estimated growth-parameter vectors showed
great variation (Fig. 2), implying that the leaf-age growth
is genetically controlled in rice. In addition, all the three
estimated growth parameters showed an approximately
symmetrical frequency distribution (Fig. 3). This indi-
cates that the growth-parameter vector 6 = (a, b, c) had
the statistical features of multiple quantitative traits suit-
able for MCIM analysis.

In order to examine whether using different growth
models could affect the results of GMM, we identified
another empirical growth model, which can also fit the
leaf-age growth data very well within the time span of
observation (all the coefficients of determination ob-
tained by the model were greater than 95%, with an
average of 98.35 + 1.15%) but is a little more complicat-
ed than (3): i.e.,

a—+bt
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Fig. 2 Growth curves of the leaf age of 111 DH lines fitted
by GM-I (a) and their corresponding points in the growth-parame-
ter space (b)

where a, b, ¢ and d are parameters; and all other symbols
have the same meanings as those in (3). Similar to (3),
all the estimated growth parameters in (4) also showed
an approximately symmetrical frequency distribution
(Fig. 3). Therefore, the growth-parameter vector 0 = (a,
b, c, d) also possessed the statistical features of multiple
quantitative traits suitable for MCIM analysis.

For the convenience of address, we shall call (3) and
(4) growth model I (GM-I) and growth model II (GM-II)
and, correspondingly, abbreviate the QTL mapping ana-
lyses based on the two growth models as GMM-I and
GMM-II, respectively.

Both GMM (including GMM-I and GMM-II) and
JTRM were performed using the method of MCIM based
on the least-squares estimation (Wu et al. 1999). As our
main purpose was to check whether growth curves (mea-
surable trait values) and growth parameters (derived trait
values) supply equivalent genetic information for QTL
mapping, we did not use the practically observed, but
expected, data of leaf ages at the 30th, 34th, 38th, ...,
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Fig. 3 Frequency distributions of growth parameters of GM-I
and GM-1I

70th days after sowing, estimated by the fitted GM-I for
the JTRM (see also Discussion for another reason).
Besides, considering that using different cofactors in the
regression model of MCIM may significantly affect the
results of QTL mapping, we did not screen for cofactors
but used a full model containing all markers (Zeng
1994). However, because the total number of markers
exceeds the sample size, we performed MCIM on each
chromosome separately. A 20 cM-wide window was set
on each side of the marker interval being tested through-
out the MCIM analysis.

Permutation tests (Churchill and Doerge 1994) with
5,000 replicates were conducted to estimate LOD signifi-
cance thresholds. Since the MCIM analyses were per-
formed on each chromosome separately, the permutation
tests were also conducted on each chromosome separately.
In order to have a genome-wise significance level of 0.05,
a nominal significance level of 1 — (1 —0.05)12 = 0.00427
for each chromosome was used (note: rice genome n = 12).

Under such a significance level, a total of four QTLs
were detected on chromosomes 2, 8, 10 and 12 (Fig. 4),
designated as qLA2, qLAS, qLAIO and gLAI2. Among
the three methods, GMM-I detected all four QTLs, while
GMM-II and JTRM only detected three (gLA2, gLAI0

and gLAI2) and two (qLAIO and gLAI2) of them, re-
spectively.

Following Wu et al. (1999), after QTL mapping the
curves of accumulated expression, the expression rate of
the additive effect [a(f) and a'(¢)] and the proportion of
phenotypic variation explained (R?) by each QTL could
be estimated using a multiple linear regression model
containing all the detected QTLs (Fig. 5). Similar to the
case of MCIM, we again did not use the practically ob-
served but the expected phenotype data of leaf age and,
in addition, the leaf age growth rate estimated by the fit-
ted GM-I for the multiple regression analyses.

It is evident from Fig. 5 that the expression dynamics
of the QTLs were quite different. The expression rate of
the additive effect of gLAI0 dropped dramatically within
the time span, while that of gLA 12 almost remained con-
stant. For gLA2 and gLAS, the expression rates decreased
at the beginning until reaching zero and then increased
again, but the acting direction reversed. On average, over
the time span, gLAI10 and gLAI2 had the largest effects
and contributions to the explained phenotypic variation,
followed by gLA2, while gLA8 exhibited a very small
effect and contribution. This is consistent with their
LOD scores (Fig. 4).

Comparing GMM-I and GMM-II, we see that they
generated quite similar LOD profiles and detected the
same set of QTLs except for gLAS. As we have seen that
qLAS8 showed a very small effect and its LOD score was
just slightly over the significance threshold in GMM-I, it
could probably be a false positive. Hence, neglecting
qLAS, we see that GMM-I and GMM-II are basically
equivalent. In other words, using different growth
models may not greatly affect the result of GMM, as
long as the growth models can fit the growth data equal-
ly well.

Comparing GMM and JTRM, we see that their LOD
profiles were also very similar in shape, particularly in
the regions around the detected QTLs, and they also de-
tected the same set of QTLs except for gLA2 (ignoring
qLAS8). This indicates that GMM and JTRM are approxi-
mately equivalent, but GMM seems to be a little more
powerful than JTRM (at least in the present example).

Discussion

We have demonstrated the utility of GMM and its
approximate equivalence to JTRM. However, perhaps
one may still be concerned with the rationality of em-
ploying a linear multivariate regression model to analyze
growth parameters because they have a nonlinear rela-
tionship with growth curves — the directly measurable
trait values. However, this is not a problem. In fact, al-
though the theory of modern quantitative genetics is ba-
sically based on linear models and proves very success-
ful in explaining and predicting the genetic laws of quan-
titative traits, no one concerns about whether practical
traits meet the linearity assumption or not, because no
one ensures if there is really such a simple linear rela-



Fig. 4 LOD profiles yielded
by JTRM (long dashed lines),
GMM-I (solid lines) and
GMM-II (short dashed lines).
Horizontal lines indicate the
thresholds at a genome-wise
significance level of 0.05 for
JTRM (top), GMM-I (bottom)
and the GMM-II (middle)

Fig. 5 Expression dynamics of
the detected QTLs
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tionship in nature. In addition, it is also impossible to
expect all traits to meet the linearity assumption if some
do. For instance, if we assume that sub-characters (e.g.
grain length, width and thickness) follow linear genetic
models, then their attributed super-character (e.g. grain
weight o length x width x thickness) will not, and vice
versa. In short, whether linear or nonlinear, the real rela-
tionship between trait phenotypes and gene effects may
not much matter for quantitative genetic analysis. Thus,
nonlinear transformation of phenotype data (or scale
transformation) is often used in practical studies as long
as it is helpful for analyzing and understanding the
genetic problems (Mather and Jinks 1982).

It should be noted that the growth model is a special
nonlinear transformation because it does not transform
one value to another value, but a curve to a vector. Here,
we have actually taken the developmental process of a
quantitative trait as a complex trait. But this complex
trait is special because its phenotype does not appear as a
single value but a curve or a vector. For ease of descrip-
tion, we would call it a process trait. Interestingly, it
seems that a process trait must be treated as a whole in
the GMM analysis. In the present example, we also con-
ducted QTL mapping with individual growth parameters,
but no QTL was detected. This implies that each growth
parameter alone is not appropriate to be taken as a trait.

In comparison with JTRM, GMM has several advan-
tages. First, GMM can greatly reduce the amount of phe-
notype data involved in the MCIM analysis. In the pres-
ent example, the dimension of the trait value matrix used
in JTRM was 111 (lines) x 11 (traits, i.e. observation
times), while those used in GMM-I and GMM-II re-
duced to 111 (lines) x 3 (traits, i.e. growth parameters)
and 111 x 4, respectively. The reduction of phenotype
data for MCIM can greatly save computation time. This
is particularly meaningful when permutation tests or
simulation is performed to estimate significance thresh-
olds.

Second, GMM can efficiently analyze unbalanced
phenotype data while JTRM cannot. For instance, sup-
pose that we used a DH population for time-related QTL
mapping studies and planned to conduct a phenotypic in-
vestigation for a trait at a series of times (e.g. the 5Sth,
10th, 15th, 25th and 30th days after sowing). However,
due to some unexpected causes, we could not fulfill the
planned phenotype investigation on the 10th day and
therefore had to investigate the residual lines on the next
(11th) day. Thus, we obtained a set of unbalanced pheno-
type data. The phenotype data observed on the 10th and
11th days cannot be used together for JTRM, unless it is
thought that the 1-day delayed investigation would not
bring about errors. For GMM, however, there is no such
a problem because both balanced and unbalanced data
can be used for fitting growth models. So, GMM allows
a more flexible way of phenotype investigation, which
would be more convenient for practical studies. In the
present example of rice, the leaf age data were actually
unbalanced. This was another reason that we did not use
the observed phenotype data for the JTRM.

Third, GMM may potentially help us better under-
stand the genetic basis of quantitative trait development
because the growth parameters may often have clear bio-
logical meanings. For example, in the human-height
growth model proposed by Preece and Baines (1978),
three out of five parameters have clear physiological
meanings, i.e. adult height, approximate age (E) at which
the pubertal growth spurt occurs, and height reached by
the child at age E. It can be expected that the QTL
effects on these parameters with clear biological mean-
ings would possibly provide useful information about the
genetic and the physiological mechanisms of quantitative
trait development.

If we have no theoretical growth model for a trait, we
have to look for an empirical model. Certainly, the most
important criterion for identifying the best model is the
goodness of fit. But sometimes, we may find several
empirical growth models suitable for a trait. In this case,
we may prefer to choose the simplest one with fewest
parameters, since we have seen in the above example
that using different growth models may not greatly affect
the result of GMM, as long as the growth models can fit
the growth data equally well.

In principle, the method of GMM is potentially appli-
cable to studying any quantitative trait. GMM can be
used to analyze the whole developmental process, as
well as only a part (as in the present example) of a trait.
Sometimes, a very complicated developmental process
needs be divided into several phases and described by a
multiphasic growth model (Koops 1986; Koops et al.
1987). In principle, such multiphasic growth models are
also suitable for GMM analysis.

The principle of GMM can also be utilized to study
QTLs underlying biological response to certain environ-
mental stresses, such as cold, drought, submergence and
irradiation. The response changes with the intensity
(dose) of stress as a curve. In general, the dose-response
curve can be described by a theoretical or empirical
function containing several parameters. Hence, QTL
mapping can be performed based on these parameters.
Moreover, GMM can even be applied to a more compli-
cated situation, where the development of a quantitative
trait is exposed to a gradient of stress (environments)
so that the trait-value growth process will appear as a
curved surface in a three-dimensional space defined by
time, stress and trait value, as long as an appropriate
growth model can be identified.
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